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Abstract--The hydrodynamics of two droplets submerged in an unbounded arbitrary velocity field is 
studied by solving Stokes' equations for the flow fields in and around the droplets by means of the reflection 
method. Solutions are obtained for the drag forces and the terminal settling velocities of two droplets 
moving in an unbounded quiescent fluid in a gravitational field. 

I, INTRODUCTION 

The motion of two droplets submerged in an unbounded arbitrary velocity field is yet an 
unsolved problem. Its significance lies in the fact that it is a necessary first step in solutions 
relevant to emulsions. 

In calculating the phenomenological properties of dilute emulsions, one is mainly concerned 
with two properties: the velocity of the droplets in the emulsions and the rheological equation 
of the emulsion. The former is applicable to the equation of conservation of the volumetric 
concentration, while the latter is applicable to the momentum equation (Batchelor 1972; 
Batchelor & Green 1972b). 

A second problem of interest is that of meteorological and cloud physics. It is well 
established that cloud formation starts when water vapor condenses on micrometer size 
particles to form small droplets, typically a few micrometers in diameter. These droplets then 
coalesce to form drops a few hundred micrometers in diameter, which then proceed to grow, 
eventually falling as rain. It is accepted that the principle mechanism of this coalescence is that of 
collision. Therefore, one of the major problems is the computation of collision efficiencies. These 
collision etSciencies can be obtained only when the problem of the motion of two unequal drops in a 
quiescent unbounded velocity field is solved. 

There exists substantial literature devoted mainly to rigid spheres moving in various 
configurations, e.g. the motion of two rigid spheres along their line of centers (Stimson & 
Jeffery 1926), the motion of a sphere towards a wall (Brenner 1961) and lately the solution for 
two equal rigid spheres moving perpendicular to their line of centers (Goldman, Cox & Brenner 
1966) and for two unequal spheres in the same configuration (O'Neill & Majumdar 1970). 
Approximate solutions were obtained for the case of two rigid spheres suspended in shear flow 
(Lin, Lee & Sather 1970; Batchelor & Green 1972a; Brenner & O'Neill 1972; and for touching 
spheres by Nir & Acrivos 1973). 

As for drops, an exact solution was obtained for two unequal drops moving along their line 
of centers (Haber et al. 1974) which included the effect of different viscosities in the drips and 
the solution for two touching drops. 

The solution for two drops moving perpendicular to their line of centers has not previously 
been obtained. An approximate solution is presented herein which uses the method of reflection 
to calculate the flow fields in and around the droplets, the drag forces on the droplets, and their 
terminal settling velocities. 

The method of reflection is well described by Happel & Brenner (1965) for the solution of 
two rigid spheres moving arbitrarily in an unbounded medium. 

fPresent address: EPRI. Box 10412. Palo Alto, CA94303. U.S.A. 
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2. STATEMENT OF THE PROBLEM 

The problem considered herein is that of two liquid droplets moving arbitrarily in an 

unbounded medium. 

The fluids involved are assumed to be homogeneous, isothermal, Newtonian and of constant 
densities. The unperturbed flow field v~ is Stokesian, but other than that is quite arbitrary. 

Surface active agents are absent from the system. 

Two spherical coordinate systems are used, i.e. R, O, do, and r, 0, ~b, whose origins coincide 

with the center of the droplets ' a '  and 'b '  (figure 1). The droplets are initially at a distance l 
apart. The motion of the droplet is such that the two coordinate systems can be assumed to be 

inertial, and the flow field is in quasi-steady-state. 

It is further assumed that the droplets are small and move with low relative velocity, such 
that the inertia terms in the equations of motion can be neglected. 

With these suppositions the equations of motion and continuity are as follows: 

ILeV2V = Vpe, [lal 

V" v = O, [lb] 

where the subscript e indicates a property exterior to the droplet. 

For the flow interior to droplet ' a '  

tzoV2u = Vpi, [2a] 

V. u = 0. [2b] 

For the interior of droplet 'b ' ,  

tzbVZU = VPi, [3a] 

V. U = 0. [3b] 

Equations [1] to [3] are to be solved subject to the following boundary conditions: 
Far from the droplets the flow field is unperturbed, i.e. at R = oo and at r = ~  

v=voo. [4] 

On the interface of the droplets it is assumed that the velocities are continuous and the 

normal stress vary by a term proportional to the surface tension, viz. at r = a 

at R = b  

v* = u*, [5a] 

u * -  tr = Iia " tr, [5b]  

~'(r) = ¢(r)+ o'a + tr, [5C] 

v**  = U**, [6a] 

U * *  • tR = Ub • tR, [6b]  

¢r(m = T(s) + ~b + tn, [6c] 

where an asterisk (*) indicates that the functions are to be evaluated at the interface r = a, and 
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the double asterisk (**) indicate that the functions are to be evaluated at the interface R = b; v, 
u, U, Pe, pi, P.  are the velocity vectors and pressures exterior to the droplet and interior to 
droplet 'a '  and 'b', respectively; or~rl, ~'~.), and T~t~ are the normal stress vectors based on the 
velocities exterior to the droplets and interior to droplet 'a '  and 'b', respectively; tra and trb are 
the respective surface tensions, while Ra~, Ra2, and Rbj, Rb2 are the principal radii of the two 
droplets; t, and tR are unit vectors normal to the interface of droplet 'a '  and 'b', respectively. 

3. T H E  S O L U T I O N  

The solution of [I] to [3], subject to the boundary conditions [4] to [6] should yield, 
simultaneously, the flow fields in and around the droplets, and the geometry of their interfaces. 
It was shown previously (Hetsroni & Haber 1970; Hetsroni et al. 1970) that if the geometry of 
the interface is assumed a priori, an inconsistency may result. On the other hand, the 
simultaneous determination of the velocity fields and geometry is exceedingly difficult and is 
not attempted here. Instead, an iterative procedure is adopted, similar to our previous works 
(Hetsroni & Haber 1970; Hetsroni et aL 1970; Haber & Hetsroni 1971). The solution is thus 
initiated by assuming that the droplets are spherical and solving the flow fields• Subsequently, 
the geometry of the interface is solved for these flow fields. This new interface can be used for 
solving new flow fields and the procedure can be continued until the desired accuracy is 
reached. Here we perform only the first iteration, i.e. for spherical droplets, and the solution is 
applicable only for 

Di ~ ' v ~ ' ~ l  I 1, ( i = a , b )  
o'i 

where [.t e is the viscosity of the continuous field, v~ is a velocity scale, and tri is the surface 
tension of droplet 'a '  or droplet 'b'. Therefore, we shall utilize only twelve out of the fourteen 
available boundary conditions. The remaining boundary conditions can then be used for 
calculating the geometry of the surface. 

Since the Stokes' equations of motion are linear, the following definitions are permissible, 
and are convenient: 

v = v = + v l  + v 2 ;  p e = p = + p l + p ~ ;  "ll'lr)='lT(r)~+'lTir)l+'iT(r)2 

U ----- Ul + U2; Pi = Pil + Pi2; ~r(rj = 'T(r)l + 7Ir)2 

U = U l  + U 2 ,  Pi = Pit + Pi2, TtR) = TtR)I  + TIR)2.  

[7] 

With these expressions, the boundary conditions [5] and [6] are rewritten as follows: at 
r = o o  

V 1:0,  [ 8 a ]  

at r = a  

a t R = b  

v* + vT : u*, 

UT " tr  = U a  " tr, 

(I - t,t~) ' (Ir~r~ + ~rt~)l) = (I - t r t r )  " elf)l, 

[8b] 

[8c] 

[8d] 

v** = UT*, 

v * *  • tR = 0 ,  

( I  - t R t R )  * *  * *  ¢t~R)l = ( I  t R t R )  • _ . TIR)I  , 

[8e] 

[8f] 

[8g] 
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for v~, u2, and U2, at r = oo 

at r : d  

a t R = b  
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V2=0~ [9al 

v~ = uL 

u~ • t ,  = 0 ,  

( I - t r L ) "  ¢r~2 = ( I -  trtr) " ~'(r)2, 

[9b] 

[%1 

[9d] 

v** + v~* = U~*, 

U~* • tR = Ub • tR, 

(I  - tRtR) ' ('n'(R~ + fftR)2) = (I  - tRtR) " T ~ ) z .  

[9el 

[9f] 

[9g1 

It is obvious from these boundary conditions that the solutions for vl, ul, and U1 are 
identical to the solutions of v2, u2, and U2, respectively. We therefore limit ourselves to the 
solutions of v~, ul, and UI. 

The solution is based on the method of reflection, which is described elsewhere (Happel & 
Brenner 1965; Hetsroni & Haber 1970). It consists of a sum of velocity fields, all of which 
satisfy [1] for the velocity field of the continuous medium, [2] for the velocity field interior to 
droplet ' a ' ,  [3] for the interior of droplet 'b ' .  Each of the solutions partially satisfies the 
boundary conditions. 

The reflected fields are 

vl = ~ v,i, [10a] 
i= l  

oc 

ul = ~ uli ,  [lOb] 
i= l  

Uj = ~ UIi, [10c] 
i=1 

where the second subscript under the summation indicates the number of the reflection. 
The boundary conditions to be satisfied by the reflected fields are as follows: 
The first reflection: at r = oo 

at r = a  

and in general 

and 

V I I : O ,  

V ~ + Y I I  - -U :~ l  , 

U * I  " t r  = U a  " t , ,  

( I -  t a r ) "  ( f f ( r ~  + ¢r(r) t l )  = ( I -  t r t r )  " "fir)l I, 

Ul.2k : U I , 2 k - I  = 0 ,  

[lla] 

[ l lb]  

[ l lc] 

[lld] 

[12a] 

¢(r)l,2k = T(R)I .2K-I  ----" 0 .  [12b] 
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The 2kth reflection (k = 1, 2, 3 . . . .  ) at R = 

Vl,2k ~-~0, 

at R = b  

Vl,2k + Vl ,2k- I  1.2k, 

*:,1¢ 
U I,2k " tR = O, 

(I - tR IR)  • ('lTtg)l,Zk + '/l '(Rll.2k-l) = ( I  --  tRtR)T~l~l,2k. 

The (2k + 1)th reflection at r = 

at r = a  

Vl,2k+ 1 = O, 

¥1,2k+1 + Vl,2k = U~.2k+l ,  

:,I¢ U 1,2k+l " t r  = 0 ,  

( I -  t~t~) • (¢r(,)l.2k+l + ~'(,~l.2k) = ( I -  trt~) " r(,1.2k+l. 

[13a] 

[13bl 

[~3c1 

I13dl 

[14a] 

[14bl 

[14c] 

[14d] 

Since all the reflected fields satisfy the Stokes' equations of motion, we use Lamb's general 

solution for Stokesian flow fields as follows: 

Vl.2k = ~ {V (K,t'-N-O~-V'V'-'N-I 2N(2N 1) (R P - '~ / -0+~ 'P - '~ - I}  
x ' "  1.2k . . . .  ~ 2k N -  2 V 2 ~2k R ! 2k 

N = I  --  ' 

N q- 3 Vz r ,2  1,2k, | ~ 1,2k'] 
U,.,.k = N=, ~" V×(RxN"2k)+vrbN"2k+ 2 ( N + I ) ( 2 N + 3 )  ~K PN )---~--+-~KpN ~, 

[15a] 

[15b] 

¥1.2k+1 ~ { V - - "  I 2k+l.  ~TKnl.2k+l n - 2  .-,. 2 ,.2k+,. 1 12k+ l ]  
= x (rx- ' .- ,  ; + - ~ - - . - i  2 n - ~ 2 n - 1 ) v t r p - . - i  )+n rP- '~ - ,  j~, 

n=l  
[15c] 

u,..,+, = ~ {v × (rx."~*+') + v~.l'~*+' + 
n=l  

n + 3  V(r2pnl.2k+l) 1 r a2k+l) 
2(n + 1)(2n +3) - ~-+-1 p ' J" 

[15d] 

The corresponding pressure fields: 

Pe 1'2~ = lie ~ P-L~k-b [16a] 
N=O 

1,2k+l pe 1,2k+l .7- i i  e P - n - I  , [16b] 
n=0 

Pi l'2k = lib ~ PN 1,2k, [16C] 
N = I  

Pi l'2k+l = lia ~ Pn 1`2k+l, [16d] 
n=l 

where X-.-i  , P-.-~ , X-~'~k-J, ~- '~- i ,  are solid spherical harmonics of degree 
( -  n - 1) and ( -  N - I); X,, ~'2. ÷ ~, pn l'2k +l, ¢l) n 1,2k + l , XN 1,2k, pN l'2k, f~N 1"2k, are solid spherical harmonics 

of degree n and N. It is more convenient to evaluate the spherical harmonics by first 
transforming the boundary conditions (Hetsroni & Haber 1970) as follows: 
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[R. V x (v,.s + V,.ZL-,)I** = [R V x U,.zr]**. 

[R. v x (m(R,,.?k + ~~R,l.2k-l)]** = [R. V X T,s,,.21]**, 

{R ’ v x [fR x (n,R,l.2A + n(R,,.?L-I)]}** = {R . V x (tR X T,,q,,,>k]}**, 

and 

bl.Zk+l + Vl.Zk)* ’ tr = u* I .Zk+l ’ tr = 0. 

[r. V x (VI.~A+I + VI.Zk)]* = [r ’ v x ul.?k+I1*. 

tr. V X (QI.Z~+I + P~,,L~L)~* = [r * V x TWX+I~*. 

{r. V x it, x (P,,H.~A+I + ~,,,1.2~)11* = {r. V x [t, x 7~.2~+11~*. 

The solution is now continued by defining the solid spherical harmonies as follows: 

XN ‘.” = (- IjNKNRN M$, C’$$cos M@ t 6,!,$sin Mc$]PN~(cos 6), 

4N 
l.Zk = (_ ~JN~-N+IRN$O [B l.Zk 

N,J,cos M@ + &:&sin M~$]P,v~(cos a), 

PN 
I.2k = (_ l)Nb-N-‘RN 2 [Al.Zk 

&,,cos M@ t a$hsin M@]PNM(cos @), 
M=O 

Xn 
I.Zk+l = _ a-n,.” 2 [c;%k+l 

cos rn$ t tA:‘,“+’ sin m4]Pnm(cos O), 
m=O 

@n1.2k+l = _ a-n+lr” i [b;$+’ cos m4 + b^;:f;+l 
sin m4]Pn”(cos tl), 

m=O 

1.2kcl _ 
pn --a cos rn+ + d$z+’ sin m&]Pn”(cos 0). 

xk;k_, = (_ l)NbN+‘R-N-1 2 [c’.2k _N-I,M~~~ M@ t d!-hk_,,Msin M@]PNM(cos 0). 
M=O 

a”‘,“_, = (- l)NbN+ZR-N-’ j, [ l?!Jk_ N 1 MCOS M@ + l?l;tk_l.Msin M@]PNM(~os O), [19hl 

pl.$_, = (- l)NbNR-N-’ go [Ab2k_ N I.MCOS M@ + A!$_,,,sin M@]PN”(~~~ O), [19i] 

[W 

[17bl 

[17cl 

[17dl 

[17el 

UW 

[18bl 

Wal 

[19bl 

[19cl 

[19dl 

U9el 

I19fl 

[19gl 

where al:f,kk+‘, b,$“, c$~” are coefficients to be determined. 

These coefficients are evaluated by first seeking a recurrance formula, linking the 

coefficients of a certain reflection to those of a lower order one. This can be readily achieved by 

noting the similarity between the boundary conditions of [ 171 and [ 181 and those of our previous 

work (with v,,zk = V, v,Jk-, = V,, U,Jk = V’, and v,,zk+, = v, v,Jk = Vs, and u,Jk+, = V’). It iS 

therefore sufficient to determine the coefficients a,“,, p,,“‘, and Y,,‘~ from the velocity fields v,,2k 

and v,.~~+,. by using [21] and [22] of Hetsroni & Haber (1970). 
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N 
la* a .+ ,  [20al Otn,m E ~qNFN'M ?1 At,2 * 

= ~" " "  2 ( 2 n + 3 )  -N-LU, N=O M=O 

- _ _ 

[~ t.2k _ ol n-  I N N M 2 1.2k - B F,[;;, [~8 n B - t ~ - L u +  A~-'~-J u] N(2  N)(2n 1) + q ( N n  + 1 - 2n 2N)  
'~""  u=o u=o ' 2N(2n  - 1)(2N - 1) 

+ oN+IFUM ~--L2k ] V . . . .  O¢ ' - -N-  .m I, [20b] 

2 r FN, M "~ 
1,2k N~=O 

~tn.m =£i¢n ] ~ N + I  r',N,M ~,rr, l,2k -- r~N n.m+l ,,"aal,2k / 
= M = O  t o l"{,.m nlVL-N-I,M 1- IJ ~ ~,~/'I-N-I,M~, [20c1 

where 

N,M _ _  

F L .  - 

( _  l)llZtn+rn+N_M) (n  + m + N - M ) ! ( n  - rn + N +  M ) !  
(n  + m ) ! ( N  - M)!2"+N [(n - m + N + M)12l![(n  + m + N - M)/2]!  

for (n + m + N - M)  even 

0 for (n + m + N - M)  odd [21a] 

0 for }M - ml > (N + M)  

0 for M > N, 

( n + m ) ( n + m - l )  ( n - m ) ( n - m - 1 )  
~- [21b] 

q n + m + N - M - I  ( n - m + N + M - l ) '  

Q ( M n  + N m ) ( n  + m  + 1) [21c] 
= n + m + N - M  ' 

and 

where 

J,2k-I f3N+l ~ ~ . . ~  N 
~N.M = a - n - l . m ,  

. =o .*=o ~ t ~  , ,  , -  3 )  

01,2k-I = j~N-I  ~ ~ [" n~'t0 m'~t0 ] . . . . . .  ]N,I~[ Ol 2L 1,2k-I -- 1,2k-I • O_n_ l,m ..p a-n-l,mJ P N, M = = L. ~t 

x N(2-n)(2N-1)+A(Nn+I-2N-2n)-- + a ~ + " ~ m  - 12k-u ) 
[22b1 

2n(2n - I ) (2N - l) ]~ ,M+I6c -~ -L~ j ,  

,,2k-, ~N ~" ~"  f ,,+, . . . . . .  ,,2,-~ "'' 1 'YN.M = ]J n~_O ~ 0  [Ol ]N.Mn,!'~C_n-l.m "1- a"fN'MSaJ-'~k-;'~n , [22¢] 

n.m 
f N.M = 

A =  

8 =  

(_  l)~/2t.+..+N_u ~ (n  + m + N - M ) ! ( n  - m + N + M ) !  

(n  - m , ) ! ( N  + M)!2"+N[(n  - m + N + M)12]![(n + m + N - M)/2]! 

for (n + m + N - M)  even 

0 for (n + m + N - M)  odd, 

( N  + M ) ( N  + M - 1) ~_ ( N  - M ) ( N  - M - 1) 

( n - m + N + M - 1 )  ( n + m + N - M - 1 ) '  

( M n  + N m ) ( N  + M +  1) 
(n  - m + N + M )  ' 

[23a1 

[23b] 

[23c] 

and where 

a b 
ot = 7 ; 3 = 7 [241 
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The solution is cont inued following the scheme we used previously,  viz. 

A I . 2 k  _ 2 N -  1 
- N - I , M  

• l ' t O  1 , 2 k - l l  ± "3D 1,2k-  PI 
(N + 1)(1 + abj {Ab[(2N + 3)a~!~ -E + (2N + , m u ,  M J 7- ~oN, M ~, [25a1 

• \ 1 2 k - I  l x m l  2 k - l a  ,x 1 2 k - D  ol.2k I {hb[(2N + UaiO.M + ( 2 N  [25b] - - l ) p ~ . M  I - - Z O r n .  M ~, 
'- '-N-1M = 2 ( N +  l)(1 + l h )  

Al,•, _ (2N - 1)(2N + 3) F2N + 3 ~ , , - i  1,2*-I] 
N,M- " N ( i ~ b )  [2-~-~-~a~Ta, + /3u .u  1, [25c] 

A 1,2k 
D 1,2k z ' l  N , M  

,-'N,M-- 2(2N + 3) '  [25d] 

C J,2* ( N  - 1 ) ( 1  - Ab) 1.2k-I 
-N-~'M= N ( N  + I)[(N - DAb + N + 21 YN, M , [25e] 

Ci,2k _ 2 N  + 1 1,2k-I 
N . u -  N ( N  + 1)[(N - l ) A b  + N + 2 ]  YN,  M , 

[25f1 

~,2k+l _ 2 n -  1 
O - n -  l,rn - -  

I 2k 1,2 1,2 
(n + 1)(1 + h.)  {)t~[(2n + 3)a.:m + (2n + 1)/3.. 2k] + 23..~,k}, [26a] 

~,t.2k+, 1 {a~[(2n + tzk 12 12 - l )a. : , .  + (2n - 1)/3.:~ k] - 2a.:Lt], [26b] 
. .- .-i .m 2(n + 1)(1 + X~) 

,,2,+1 (2n - 1)(2n + 3) [(2n + 3) 12 , -  a ~.2'] 
a ..... = ~ 1  + Xo) [ 2 n + l  a . ) .  -r ~...., j ,  [26cl 

b 1.2k+, = a.l: 2k 
" "  2(2n + 3) '  [26d1 

1,2k+l -- (n - 1)(1 - A.) ~,L k 
C _ n _ l ,  m - -  n(n + l)[(n - l )& + n + 2] Y"'"' 

[26e] 

12k+t  2 n  + 1 
cn~m = n(n + l)[(n - I)A. + n + 2] y t:~k, [26f] 

for k =  1,2 ,3  . . . .  

Thus,  the solution of the reflection 2k was expressed in terms of the coefficients of reflection 

(2k - 1), and the (2k + 1)th reflection was expressed in terms of the coefficients of the reflection 

2k. 

Obviously,  it will suffice to solve the coefficients of the first reflection only, namely Vll and 

u~l. This is achieved by defining 

Vl,  O = v ~ - u a ,  

and then applying [26] with k = O. This is quite permissible since the boundary  condit ions of 

[I 1] are similar to [14] for k = 0, with the exception that u ,  subtracted from u . .  
The coefficients t o t.0 1,o ~ . , , / 3  . . . .  and y..,. are determined in an analogous way to the one described 

by Hetsroni  & Haber  (1970), their [17], [19], [20], with l0 a,;,, = am", etc. 

A similar solution can be obtained for the flow fields v2, m,, and U2. 

Thus,  a solution for the flow fields is obtained to any desired accuracy which is determined 

by the order of a and /3, for a given v~. Also, the drag forces acting on the droplets is 

calculated: 
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f/~ 4 7r lz ea ' ~ .  r .  I 2 k + l  - -  2 2 k + l - ,  - -  ~ ^ 1 , 2 k + l  ^ 2 , 2 k + l x .  ~ 1 , 2 k + l  - -  2 , 2 k + l x . ~  
t t a - ' ~ , l  * a - ~ . l  ) !  -1- + + [27a] ta-2,1 a-2A )] ta-2,0 -t- a-2,0 )K], 

k = O  

~ ' ~  1.2k 2 2k • ^ 1.2k ^ 2 . 2 k  • 1.2k Fob 47r#eb [(A-2,1 + A='2,1)l + (A-2.1 + A_2.01 + (A-2.o + A 2.2k_2.o)k]. [27b] 
k = O  

Examples 
As a first example we present the solution for the drag forces and terminal settling velocities 

of two droplets falling in an unbounded quiescent fluid in a gravitational field. The solution is 
carried out to O(a"fl") where n + m ~<5. 

The velocities of the droplets are expressed by: 

Ua = uaxi + Uazk, [28a] 

Uh = Ubxi + Ub:k, [28b] 

and 
v~ = 0. [28c] 

From the following vectorial operations we obtain: 

t , .  (v=-  i / [ a )  = t . .  Vt.o = - [Uax sin 0 cos ~b + u~z cos 0 

= -(Uax cos (~Pll(cos 0) + uazPj(cos 0))], [29a] 

t~- V x ( v = - u . ) = 0 ,  

using [21] and [22] from Hetsroni & Haber (1970): 

[29b] 

/3~'g = - u,:, [29c] 

1,0 fll.I = - u~x, [29d] 

and all the other coefficients are zero. Substituting [29] into [26] one obtains the coefficient ~'J a-2.o, 
1,1 a i , i  i , i  I , I  1,1 I , I  1,1 1,1 1,1 b-2,o, i.o, bLo, and a-2,b b-2.1, aL~, and bLI where only a-2,o and a-2d are significant for the 

calculation of the drag forces. However, in order to bring the solution to the desired accuracy 

and order of (n + m), one must compute higher reflections. Using [25] ~and [26] up to the sixth 

reflection, the desired order is obtained. All higher reflections have no contribution to that 
order. 

An identical procedure should be followed for solving v2. However, since v2 is completely 

similar to vt, solution for the latter is applicable to the v2 field, with 'b '  replacing 'a ' ,  Ab 
replacing )t~, Lib replacing ua and/3 replacing a, and vice versa. 

After some lengthy algebra the following is obtained: 

Fa: [ (2+3Aa)(2+3Ab)afl+(2+3Aa)(2+3Ab) 
2/3 + )t. - ua: 1 Jr 4(1 + Aa)(l + AAb) 4(1 + A.)(1 + Ab) fl3°t 

67r/zea 1 + A~ 
Aa(2 + 3Ab) (2 + 3A~)2(2 + 3Ab) 2 2,~2] 

- 2(1 + )to)(1 + )to) a3fl + 16(1 + )t~)2(1 + Ab) a p j 

+ Ub:[ 2 + 3)tb a 4  A_b [3 3 
L f f i + ~ b )  ~" 2(1 + Ab) 

Aa(2 + 3Ab) 
2(2 + 3,L)(I + Ab) 

(2 + 3A~)(2 + 3)tb) 2 ~2 ] 
/3a2 - 8(1 + ,L)(1 + )tb) 2 /a a j  

=-- Kaz(a, fl, Zo, )tb)Ua: + Kbda, fl, Aa, Ab)Ub.., [30] 
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(2 + 3A~)(2 + 3Ab) F,~ (2 + 3A~)(2 + 3Ab) a/3 -F fl3a 
2/3+A = u ~  1÷ 16(I+A~(I+Ab) 8(I+Ao)(I+Ab) 

67r/zea 1 + A~ 

Aa(2 + 3Ab) (2 + 3Aa)2(2 + 3Ab) 2 2~2] 
q 8(1 + A~)(I + ab) a3/3 + 256(1 + Aa)2(1 + Ab) 2 a p ] 

I- 2 + 3hb + hb 3 ÷ ha(2 + 3kb) ~et2 
- U ~ x [ ~ 1 3  ~ 1 3  4(2"~3-ha)(-~kbi 

(2 + 3>.8)(2 + 3kb) 2 7(2 + 3k~)(2 + 3kb) a134 
+ 64(1 + ha)(1 + kb) 2 13:a -~ 64(1 + k~)(1 + h.b) 

7(2+3kb) 3r,2 (2+3ka):(2+3kb) 3 2.3] 
64(1 + kb) 2 a p + 1024(1 + k~)2(l + hb) 3 a p ] 

=-- Kax(Ot, ~, k~, kb)Ua~ + Kbx(Ot, 13, ha, kb)Ubx. [31] 

Similar solutions are obtained for the drag force acting on droplet b. Thus, 

and 

Fbx 
,_/2/3+Afx_Lbx(a,/3, Aa, Ab)Ubx+L~(a,/3, A,~,Ab)uax ' 

Fbz 
,_[2/3+afx=Lb~(a,/3, Aa, Ab)Ub~+La~(ot, fl, Aa, ab)Uaz" 

[32] 

[33] 

It is obvious that 

and 

Lbx(a,/3, Aa, Xb) = Ko~(/3, a, Ab, Xo), 

Lax(a,/3, A~, Ab) = Kbx(fl, a, Ab, A~), 

Lbz(a, fl, Ao, Ab) = Kaz(/3, a, Ab, Aa), 

La:(a,/3, Aa, Ab) = Kbz(/3, a, Ab, Aa). 

[34] 

A very simple relationship exists between Kbx, L,,~ and Kbz, Laz, namely 

• 2 / 3 + A b o ,  ta 2/3 + Aa aKbx(a, [3, Aa, Ab) = 1 + Ab pt .ax,  ,/3, )to, Ab), 
l+Ao 

2/3 + Ab/3L,,~(a,/3, Ao, ab). 2/3 + l~a aKbz(a,/3, A,,, Ab) = 1 + Ab 
I+Ao 

[35] 

Hence 

2/3 + A . . . .  2/3 + Ab 
iYTa "^bx~'~,/3, Xo,;~b)= 1+,~------7 [~Kbx(/3, ol, ~b, Xa),  

2/3 + Ab ~Kbz(/3, a, Ab, A,,). 213 + Aa aKbz(a, g, Aa, Ab) = 1 + Ab 
l+Aa 

[36] 

Equations [35] can be proved by substitution into [30] and [31]. A general proof to any order of 
accuracy of the K's  is presented in appendix A. 
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These solut ions contain as special  case  the solut ion for  rigid spheres  moving 

unbounded  gravi ta t ional  veloci ty  field p resen ted  in Happe l  & Brenner  (1965). 

In order  to obtain the velocit ies of the drople ts ,  s imple force  balance  is used since: 

and 

4 3 2/3 + A. 
Fg. = ~ 7ra Ap~g = 6zr/z~aUo~ 1 + A. ' 

4 3 2/3 + At, 
Fgb = ~ zrb Apt,g = 6~'tzebUob 1 + A - - - - ~  ' 

11 

in an 

[37] 

[38] 

The solut ion of [38] yields:  

where  

Ua = u~xi + u ~ k  = [k~zkk + k~ ( l  - kk)] • Uol + [kt,:kk + kt,x(l - kk)]" Uo2, 

Ub = Ub~i + Ub~k = [l~zkk + l~x(l - kk)]" Uol + [lb~kk + lt,x(I - kk) ] .  Uo2, 

kaz = - -  kt,z = -__Kbz 

I~ -_ _ __L~: . lb: = --K~ 
A~ ' A .  ' 

A~ = K,~zLb~ - Kt,~L,~z, 

and k~x, kbx, lax, lbx are obta ined  similar ly by interchanging the subscr ipt  z by x. 

E x a m p l e  2 

In the second example  we present  the solut ion for  the drag force  acting on two drops  

submerged in a Couet te  flow field. 

The undis turbed veloci ty  field is v~ = G X k  (figure I). 

Since v* = Gk[X]*  = G k ( a  sin 0 cos ~b - I~) and v** = Gk[X]**  = G k ( b  sin 0 cos qb - It,), 

l-l(r~ = -- P*L + / z G ( k  sin 0 cos ~b + i cos 0), 

II~m~ = - p**tR + ~ G ( k  sin 0 cos • + i cos 0) .  

The boundary  condi t ions for  Vl and v2 are similar. We therefore  limit ourse lved  to the solution 

of Vl, Ul and Uj and the solution for  v2, u2 and U2 is easi ly obta ined by interchanging la with lb, a 

with b and ~a with ;tt, and vice versa. Fur ther  simplification can be achieved by dividing v~ into 
two terms:  

v® = -- Glok + Gr  sin 0 cos S k  = v~' + v~." 

Kazuaz + KbzUbz = Uoo • k, 

Lazuaz + LbzUb~ = Uob ' k, 

K~xu~  + KbxUbx = Uoa " i, 

L,xuox + LbxUbx = Uob " i. 

where Uo, and Uoh are the terminal sett l ing veloci t ies  of drop a and b, respect ively ,  suspended 
in an unbounded  quiescent  gravi ta t ional  field, then: 
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Z 
~---~ o ...-----~--~ "-/ , 

In 

Figure I. 

..i___... x 

A solution for  the first term v" has a l ready been obtained in example  1 where one has to 

interchange in [31] ua with Gla and Ub with GIb. The second term is a new one and the solution 

for  the drag force is p resented  as fol lows:  

From the fol lowing vector ia l  operat ions ,  we obtain: 

tr" . . . .  ( ]  v ~ -  Gr  sin 0 cos 0 cos ~b l [3Ga r_ p21(co s O) cos ~b, 
\ a /  

r . V x v "  = - Gr  sin O sin cb = - G a ( r ) P l l ( c o s  O) sin cb. 

Using [21] and [22] f rom Hetsroni  & Haber  (1970): l.o ~.o fl2J = 1/3Ga, YL~ = -  Ga. To obtain a 

solution of 0(a"/3")  where  n + m ~< 7 the fol lowing coefficients were calculated (five reflections 

are needed):  

1st reflect ion--aS- '~,  ]'~ t.~ ,,L~ Lt ~.~ ,,.~ ~.J t.~ ~.~ ~.t ,~tj • b-3.1, 0/I.0, Pl,O, '~1.0, 0/2.1, P2.1, Y2,1, 0/3.0, 03.0, 0/3.2, P3,2, 

2 n d  reflection--AL'~0, A~], 1.2 1,2 1,2 AI ,2  AI ,2  1,2 1.2 1,2 ~1,2 12 1,2 o l , 2  , -, B-2.0, B - s A ,  C 3.1,,-a-4.0, za-4.2, B-4.0, B-4.2,0/I .o,  Pl.o,  Ytio, 0 / l . l ,P l . l ,  

3rd • ~ 3 1.3 13 reftect]on--a::~o, a-2 ~, • . /313o, 

4th " 14 14 reflectlon--A_'2.o,/3~o, 

5th r e f l ec t ion - -a  ~-'~.o. 

The drag force acting on the drops  is calculated by [27] 

1 1,3 fa~ = 4a~r/x,{(a-2.o + a I-~.o)k + a l-'23ji} + 0(0/"/3 " ) (n  + m) > 7, 

F~,  = 4rrblte(A~-'~.o + A~'4.o)k + 0(0/"/3m)(m + n ) > 7. 

By interchanging a, a,  A. wi th  b, /3 ,  Ab and vice versa, f ~  and F~b are obtained• Hence  the total  

drag force  acting on a drop a is as fol lows:  

f :1- 4 A~(2+3A~)(2+3Ab) ,~3Ab(2+3A~)(2+5A~) 
f . o  : t { - 4 ~ r l ~ . G a  t [0/ P 1--~ + ~ ~b) + 0/'P Eli 
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A,,2(2 + 3Ab) ÷ azfl5 (2 + 3A,,)(2 + 5A,,)(6 + 37Aa) 
+ a6fl 16(1 + Aa)2(1 + Ab) 384(1 + Aa)2(l + 7Ab) 

_ [33ot4 Aa(17AaAb) + lOAd + 6Ab + 4) 

16(1 + Aa)2(l + Ab) 

+ as~} 2 Aa(2 + 3Aa)2(2 + 3Ab) 2 
256(1 + Aa)3(l -t- ,~b) 2 

3 --4 Ab(2 + 3Ab)(2 + 3Aa)(2 + 5Aa)] r Ab(2 + 3/~a) ~4 
+or IJ 2 - ~  +-A~2-~--~ ~b~ ~ J + 4~'tzeGab " " ~  [4(1 + 'L)(1 + '~b) 

Aa(2 + 5Ab) 

4(1 + X~)(l + Ab) 
-5 Ab(2+3Ab)(2+3A~) 2 a3133A~(2+3Aa)(2+3Ab)(2+5Ab)]~ k 

+ j j  

f51r/Ze~ 2(I+Ab)(2+5Ao),~5 21 . . . . . . . . .  
+~.---~--oa ~ S r ~ )  pot f, tu~a p )~m+n)>7, 

and a similar expression is obtained for Fob. 
The result is interesting since a drag force was obtained in the i direction. This force causes 

the drops to migrate along their line of centers perpendicular to the direction of v®. The 
direction of the motion depends on the sign of G and the magnitude of ,~ and Ab (smaller or 
greater than unity). 

No such component of the drag force is obtained from the solution of v'. The magnitude of 
that velocity depends mainly on the radii of the drops, the distance between their centers and 
the shear intensity. It is well understood that when the drops come closer the first term above 
cannot explain the whole phenomenon. More reflections, or even an exact solution are needed. 

4. SUMMARY 

Two solutions are presented in the paper. One for the problem of two drops of different size 
and viscosity moving in an arbitrary unbounded field along their line of centers, and the other 
for two drops moving perpendicular to their line of centers. The reflection method is used and 
recursive formulae obtained which lead to solutions for the flow fields to any desired accuracy. 

As special cases, approximations for the drag force, to the order of (a/l)'~(bll)" (when 
m + n < 5), and to the settling velocities are obtained for two drops moving in a quiescent 
gravitational unbounded field, and in Couette flow. 

The coefficients K~z and Kbz, defined in [30], are the coefficients for the drag force acting on 
drop a induced by the motion of drops a and b, respectively, in the z direction (problem I). 

The coefficients K,~ and Kbx, defined in [31], are the coefficients for the drag force acting on 
the drop a induced by the motion of drops a and b, respectively, in the x direction (problem II). 

The drag force coefficients Koz, Kbz are plotted in figures 2 to 5 and compared with the exact 

2.2 

v "  

05 

i i I 

K~Z 
--_ KOZ 

i 

X=O 

/ ~ 0 " ~ 0  .'~ 

I-C ~ ~ O . t  
0"2 0-4 0'6 0"8 I'0 

Figure 2. Kaz and K' .  are the respective approximate [30] and exact (Haber et al. 1974) coefficients of the 
drag force acting on drop a induced by the motion of drop a in the z direction. (A = 0, air bubbles in water). 
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1.6 

1.2 

I I I I 

- -  -K 'bz  X -" 0 

. . . .  Kbz 

a5 o.e ~ - 

O"~ ~ - 

I [ I 1 
0-2 0"4 0 ' 6  0-8 I'0 

/3 
Figure 3. Kh.. and K;,: are the respective approximate [30] and exact (Haber et al. 1974) coefficients of the 
drag force acting on drop a induced by the motion of drop b in the z direction. (A = 0. air bubbles in water). 

3 - 0 ,  - -  I i I I 

K'az ),.---67 

2 . 6 -  - - - - -  Kaz 

.~ 2.2 

~.8 ~ . / 

Z.. 

o o ,  0 . 8  , . o  

B 
Figure 4. K,: and K' :  are the respective approximate [301 and exact (ttaber et aL 1974) coefficients of the drag 

force acting on drop a induced by the motion of drop a in the z direction. (I  = 67, water drops in air). 

drag coefficients K'= and K~,= obtained by Haber et al. (1974). Two cases are plotted: A = 0 
(approximating air bubbles in water) and A = 67 (approximating water drops in air). The results 
obtained by the method of reflection are good for the A = 0 and become worse as ~t increases. 
For ~ +/3 close to unity (two drops close to each other) the method of reflection fails entirely. 
Instead of increasing to infinity the coefficients K,z and Kb~- are limited constants of order of 

magnitude 1. The method of reflection yields accurate results for a +/3 < 0.5. 
Exact drag force coefficients for two drops moving perpendicular to their line of centers are 

yet unknown and the results obtained for Kax and Kbx (see figures 6 and 7) can be compared 
only with the ones obtained by Happel & Brenner (1965) for the solid spheres. The results 
plotted for A = 67 were compared with the drag coefficients obtained for A = ~ and the results 
obtained by Happel & Brenner (1965). No differences of any significance were observed. 

Other interesting results are that the coefficients Ko~ and Kbz are larger than K,~ and Kbx, 
respectively, (for the same a,/3, and ,~) as well as the expected result that all the coefficients 

grow monotonically as A increases. 
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2'41 I I I I 
I 

I " / 

1"2 

I I ~ . , , / i  

0 " 8 -  

I I I I 
0 0'2 0-4 0 '6  0"8 I '0  

Figure 5. Kb~ and K~,z are the respective approximate [30] and exact (Haber et al. 1974) coefficients of the 
drag force acting on drop a induced by the motion of drop b in the : direction IX = 67. water drops in air). 

1"4if ' 'x.o' '¢o' ' ;-' ' ' 
- -  - -  - -  X = 6 7  ( ~ . ( 3  5~ 

1"2 0 ~ i 

~.o[ ._  ~ ~ ~ _ . . . . . ~ . . ~ . ~ _  ~ ~ s _ . . . _ . . . . - . . .  - ' ~ - ~  - - I  I I I I 1 
0 0'2 014 0"6 0"8 I'0 /3 

Figure 6. K,, is the approximate coetficient [31] of the drag force acting on drop a induced by the motion 
of drop a in the x direction. 

o l 0"8 

0-6 

i 

0"4 

0.2 

O0 1.0 

, , /  

- - - -  - -  )k=67 / 

/ .~/ 

/ ! 
/ / 

/ / /  ~ / : , " /  

Z I I I I I I 
0 '2  0.4 0"6 0"8 

Figure 7. Kb~ is the approximate coefficient [31] of the drag force acting on drop a induced by the motion 
of drop b in the x direction. 
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A P P E N D I X  A 

Assume a system of two rigid spheres moving in an unbounded quiescent fluid. 
We shall describe two different problems. 
(I) A sphere of radius a is moving at velocity u,, while the sphere of radius b is at rest. The velocity field and the 

stress field generated are u~ and ~ ,  respectively. 
(II) A sphere of radius b is moving at velocity U b while the sphere of radius a is at rest. The velocity field and the 

stress fields generated are u2 and ~r2, respectively. 
Using the reciprocal theorem one obtains: 

fs Ul ' n:"  ds = fsU2 • ~r 2 • ds, [All 

where S is a surface which contains any arbitrary closed volume. Assume that S consists of three different surfaces: S~, 
which is a surface of a sphere with a very large radius r and which contains the two spheres; Sa and Sb, which are the 

2 2 surfaces of spheres a and b, respectively. Since u~ and u2 decrease asymptotically with r ~, ~t and ~'2 with r - ,  ds with r 
and u , .  n" 2 . ds and u2' ¢r~. ds with r -~, the integrals [All on the surface S® are negligible. Since u~ = u~ on Sa, and u, = 0 
on Sb, and since n2 = Uh on Sb and u, = 0 on S~, one obtains: 

u~. fs 7r2.ds=Ub. fs rr~.ds. [A2] 
b 

But 

fs~ '/'¢2 " ds = Fa (b), 
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fs lrL, ds = Fb ("), 
h 

where F. ~b~ is the drag force acting on sphere a induced by the motion of sphere b moving at the velocity Uh and similarly 
for Fb ~"~. Hence 

u. • Fa (t'~ = U h ' Fb ("1. [A3] 

F. ~b) and F~, ~") can be written in the following general form: 

F. a'l = 6*r~aK~, " Ub, 
[A4] 

Fb (a~ = 67rtz~bK. " u~, J 

where K a and Kh are second rank tensors. 
Substituting [A41 in [A3]: 

But 

Hence, 

and since u~ and Ub were arbitrarily chosen 

auo • Kb "Ub = bUb " Ko . u.. 

Uh • K. • u. = U b • (U a " Ka T) : II a ' Ka T. U h, 

a u .  . Kb  " Ub = bun • Ka r . Ub, 

agb = bK~ r. 

But Ko and Kb are expressed in the (x, y, z) coordinate system as follows: 

o} Oot 
0 0 L,, z 0 Kh: 

But, since Kb~ --- Kbr and Lax = Lot, then 

For two droplets [A3] is valid and [A4] becomes: 

which yields at last: 

[A5I 

aK~x = bL.~, [A6] 
aKb, " = bLaz. 

2/3 + ~.. 
F ~b~ = 6,r#ea . ~  Kh • Ub, 

" I + h  a 

Fh~.~ _ 2/3 + & 

a 2/3 + A. b 2/3 + Ab L 2/3 + A . . .  = b 213 + A b  l-TV I+A  L°. 
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